Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography.

نویسندگان

  • Shiv Saidha
  • Stephanie B Syc
  • Mohamed A Ibrahim
  • Christopher Eckstein
  • Christina V Warner
  • Sheena K Farrell
  • Jonathan D Oakley
  • Mary K Durbin
  • Scott A Meyer
  • Laura J Balcer
  • Elliot M Frohman
  • Jason M Rosenzweig
  • Scott D Newsome
  • John N Ratchford
  • Quan D Nguyen
  • Peter A Calabresi
چکیده

Optical coherence tomography studies in multiple sclerosis have primarily focused on evaluation of the retinal nerve fibre layer. The aetiology of retinal changes in multiple sclerosis is thought to be secondary to optic nerve demyelination. The objective of this study was to use optical coherence tomography to determine if a subset of patients with multiple sclerosis exhibit primary retinal neuronopathy, in the absence of retrograde degeneration of the retinal nerve fibre layer and to ascertain if such patients may have any distinguishing clinical characteristics. We identified 50 patients with multiple sclerosis with predominantly macular thinning (normal retinal nerve fibre-layer thickness with average macular thickness < 5th percentile), a previously undescribed optical coherence tomography defined phenotype in multiple sclerosis, and compared them with 48 patients with multiple sclerosis with normal optical coherence tomography findings, 48 patients with multiple sclerosis with abnormal optical coherence tomography findings (typical for multiple sclerosis) and 86 healthy controls. Utilizing a novel retinal segmentation protocol, we found that those with predominant macular thinning had significant thinning of both the inner and outer nuclear layers, when compared with other patients with multiple sclerosis (P < 0.001 for both), with relative sparing of the ganglion cell layer. Inner and outer nuclear layer thicknesses in patients with non-macular thinning predominant multiple sclerosis were not different from healthy controls. Segmentation analyses thereby demonstrated extensive deeper disruption of retinal architecture in this subtype than may be expected due to retrograde degeneration from either typical clinical or sub-clinical optic neuropathy. Functional corroboration of retinal dysfunction was provided through multi-focal electroretinography in a subset of such patients. These findings support the possibility of primary retinal pathology in a subset of patients with multiple sclerosis. Multiple sclerosis-severity scores were also significantly increased in patients with the macular thinning predominant phenotype, compared with those without this phenotype (n = 96, P=0.006). We have identified a unique subset of patients with multiple sclerosis in whom there appears to be disproportionate thinning of the inner and outer nuclear layers, which may be occurring as a primary process independent of optic nerve pathology. In vivo analyses of retinal layers in multiple sclerosis have not been previously performed, and structural demonstration of pathology in the deeper retinal layers, such as the outer nuclear layer, has not been previously described in multiple sclerosis. Patients with inner and outer nuclear layer pathology have more rapid disability progression and thus retinal neuronal pathology may be a harbinger of a more aggressive form of multiple sclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Coherence Tomography and Corpus Callosum Index in Cognitive Assessment of Multiple Sclerosis Patients

Background: Multiple Sclerosis (MS) is a neurodegenerative disease of central nervous system. Different approaches have been developed to study MS progression and cognitive dysfunction as the major symptom of the disease. The current study compared Optical Coherence Tomography (OCT) and Corpus Callosum Index (CCI) for the early evaluation of cognitive dysfunction in MS patients.  Objectives: T...

متن کامل

LETTER TO THE EDITOR Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography

1 NeuroCure Clinical Research Centre and Experimental and Clinical Research Centre, Charité University Medicine Berlin and Max Delbrueck Centre for Molecular Medicine Berlin, 10117 Berlin, Germany 2 Department of Neurology, University Medical Centre Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany 3 Institute for Neuroimmunology and Clinical Multiple Sclerosis Researc...

متن کامل

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS

Susac syndrome, a rare but probably underdiagnosed combination of encephalopathy, hearing loss, and visual deficits due to branch retinal artery occlusion of unknown aetiology has to be considered as differential diagnosis in various conditions. Particularly, differentiation from multiple sclerosis is often challenging since both clinical presentation and diagnostic findings may overlap. Optica...

متن کامل

Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.

Post-mortem ganglion cell dropout has been observed in multiple sclerosis; however, longitudinal in vivo assessment of retinal neuronal layers following acute optic neuritis remains largely unexplored. Peripapillary retinal nerve fibre layer thickness, measured by optical coherence tomography, has been proposed as an outcome measure in studies of neuroprotective agents in multiple sclerosis, ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 134 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2011